Road traffic management
Road traffic management is a field of logistics that concerns the planning and control of traffic from one location to another. One of the main challenges of road traffic management is accommodating traffic in a safe and efficient way to reduce or eliminate accidents.
Most roadways include devices intended for traffic control, most of them involving direct communication with the road-user, such as signs, signals and pavement markings. These assist with navigation, assign right-of-way, areas of safe passage, indicate speed limits, provide instructions, advise of hazards, and so on. Other forms of traffic control include kerbs, rumble strips, median barriers, speed humps, and so on.
Intelligent transportation systems (ITS) are advanced applications that provide services relating to different modes of traffic management and the ‘smarter’ use of transport networks. They are based on the transfer of information between transport systems to improved safety and performance, including traffic management systems, information systems, warning systems, vehicle-to-infrastructure communication and vehicle-to-vehicle communication.
Traffic signal controllers are electronic devices located at intersections that control the sequence of the lights. Along with computers, communications equipment, and detectors to count and measure traffic, these controllers are frequently grouped into one system allowing the control of large numbers of traffic signals at intersections approaches to expressways and motorways, and so on.
Within the field of ITS, advanced traffic management systems (ATMS) integrate technology with a top-down management perspective that improves vehicle traffic flow and safety. The top-down perspective is achieved from a Transportation Management Centre (TMC) which receives real-time data from cameras, speed sensors, and so on. This data is processed and may inform actions such as traffic re-routing or using dynamic message signs (DMS).
Active traffic management is a method of increasing peak capacity and making traffic flows more efficient and smooth-flowing on busy roadways. Common techniques include DMS, variable speed limits, hard-shoulder running, ramp-metering, and so on.
In the event of incidents occurring, the control centre operator and automatic systems can change signs to alert road users, inform emergency services, and open and close lanes to keep traffic flowing and minimise delays.
Traffic restraint, or calming uses traffic control devices to create impediments for traffic rather than increasing efficiency of movement. Devices often used include speed bumps, barricades, turning prohibitions, stop signs and raised pavement markers. It can also be used in conjunction with initiatives to increase bicycle and pedestrian traffic, such as lower speed limits, wider pavements, bike lanes, and so on.
The Traffic Management Act (2004) provides powers to reduce road traffic congestion in urban areas.
[edit] Related articles on Designing Buildings
- Are electric bikes the future?
- Autonomous vehicles and the insurance market.
- Car park.
- Car sharing.
- Conserving and Enhancing Country Lanes in the Surrey Hills AONB.
- Cutting road congestion.
- Cycle path.
- Cycling and walking plan.
- Design standards for road development and improvement schemes.
- Designing smart cities.
- E-bike market projections to 2027.
- Healthy Streets.
- Highway authority.
- Infrastructure.
- Integrated transport system.
- Multi-storey car park.
- Overview of the road development process.
- Pop-up cycle lanes.
- Pylon.
- Road construction.
- Road improvement scheme consultation.
- Smart motorway.
- Smart technology.
- Sustainable transport.
- Tired of the commute? It might be time to take cars underground.
- Traffic and transport.
- Traffic calming.
- Traffic engineering.
- Transit Elevated Bus (TEB).
- Transport assessment.
- Transport design and health.
- Types of road and street.
- Underground car park.
- What are smart motorways and how do they work?
[edit] External resources
- Britannica -Traffic control
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















